Franken Jellyfish

From Sudopedia, the Free Sudoku Reference Guide
Jump to navigationJump to search

The Franken Jellyfish is a fish pattern of the Franken Fish type. This type allows either the defining set or the secondary set to contain boxes, as well as lines.

Franken Jellyfish rrrb-cccc

This is a fish diagram of a Franken Jellyfish with a defining set of 3 rows with 1 box and a secondary set of 4 columns.

n n /
n n /
e e  
/ n /
/ n /
  e  
n / /
n / /
e    
e e  
n n /
e e  
  e  
/ n /
  e  
e    
n / /
e    
n n /
n n /
n n /
     
     
     
     
     
     
  • Rotate this diagram 90 degrees for a Franken Jellyfish cccb-rrrr.
  • Swap '/' with 'e' for a Franken Jellyfish cccc-rrrb.
  • Rotate it 90 degrees for a Franken Jellyfish rrrr-cccb.

Franken Jellyfish rrbb-cccc

Here we see a Franken Jellyfish with a defining set of 2 rows with 2 boxes and a secondary set of 4 columns.

n n /
e e  
e e  
n n /
e e  
e e  
/ / /
     
     
n n /
e e  
e e  
n n /
e e  
e e  
/ / /
     
     
n n /
n n /
n n /
n n /
n n /
n n /
     
     
     

In this example, the defining set contains rows 1 & 5 and boxes 7 & 8. The secondary set contains columns 1, 2, 4 & 5. All the candidates in the defining set (marked with n) are located inside the secondary set. The remaining candidates from these 4 columns can be eliminated.

Configurations Which Look Like Franken Jellyfish but Are Not

This configuration using 2 rows in the same floor dissolves into 3 Locked Candidates steps.

n n /
n n /
e e  
n n /
n n /
e e  
/ / /
/ / /
     
e e  
e e  
e e  
e e  
e e  
e e  
     
     
     
n n /
n n /
n n /
n n /
n n /
n n /
     
     
     
Solving path
  • Locked Candidates 1 in box 3 + row 3: eliminate remaining candidates in row 3.
  • Locked Candidates 2 in box 1 + 7 with columns 1 + 2: eliminate candidates in box 4 for columns 1 + 2.
  • Locked Candidates 2 in box 2 + 8 with columns 4 + 5: eliminate candidates in box 5 for columns 4 + 5.


This configuration using 2 non-aligned boxes also dissolves into 3 Locked Candidates steps.

n n /
n n /
e e  
n n /
n n /
e e  
/ / /
/ / /
     
e e  
e e  
e e  
n n /
n n /
n n /
     
     
     
n n /
n n /
n n /
e e  
e e  
e e  
     
     
     
Solving path
  • Locked Candidates 1 in box 3 + row 3: eliminate remaining candidates in row 3.
  • Locked Candidates 2 in box 1 + 3 with columns 1 + 2: eliminate candidates in box 4 for columns 1 + 2.
  • Locked Candidates 2 in box 2 + 5 with columns 4 + 5: eliminate candidates in box 8 for columns 4 + 5.

A configuration with 2 boxes sharing the same 2 columns (swap boxes 4 and 5 in the diagram above) would not work, because locked candidates in box 3 + row 3 would eliminate the last candidate from column 3, leaving the puzzle unsolvable.

See Also